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A,BSTRACT

An advanced design and implementation of a Control Architecture for Long Range Autonomous

Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common

structure of each design is presented based on feedback control theory. Graphical programming is

presented as a common intuitive languague for the design when a large design team is composed of

managers, architecture designers, engineers, programmers, and maintenance personnel. The whole

design of the control architecture consists in the classic control concepts of cyclic data processing

and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a

commercial graphical tool is presented that includes the mentioned control capabilities. Messages

queues are used for inter-communication among control functions, allowing Artificial Intelligence

(AI) reasoning techniques based on queue manipulation. Experimental results show a highly

autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling

simultanously several robotic devices. This paper validates the sinergy between Artificial

Intelligence and classic control concepts in having :m advanced Control Architecture for Long
Range Autonomous Planetary Rov, ers

1. Introduction

A highly autonomous rover is desired in a planeta_ exploration mission. The human on ground only

needs appropriately abstracted state and status feedback in the telemetry down link. Thus, time

delays and temporary loss of communications to Earth are not a problem because no real time

control loops are closed via the up/down link. This a_lso reduces the power consumption of rover
subsystems like telecommunication and makes more re._ources available for the actual locomotion.

Control Architectures are key elements to identify, define, and implement all the control aspects

needed to achieve the requiered autonomy. Then from the last decade, definition and design of

control architectures have been of major interest in the research field of autonomous mobile robots

[7][10][11][12][19] but however very little have been done for a high challenging scenario. This

paper is pionner in suggesting tools and procedures to design, implement, and maintain control

architectures for a highly complex mobile robot _s _ future Long Range Autonomous Planetary
Rover [1][23].

I Visiting scientist at JPL
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This paper covers three phases of building a complete control architecture for Long Range

Autonomous Space Rovers. The first phase is to build a Functional Control Architecture defining

what are the needed control functions and interactions among them. Second phase is to build an

Operational Control Architecture defining where all these control functions (either on-board or on-

ground) are located to achieve the desired control autonomy for a space scenario. An Operational

Control Architecture also defines extra operati.onal support functions in addition to the control ones.

The last design phase is to build an Implemeniation Control Architecture defining ho....__wto implement

(software, hardware, or human intervention) all the control and operation support functions.

This paper presents frameworks, procedures, and an advanced tool to support the design of each type

of control architecture and the transition among them for a Long Range Autonomous Space Rover.

We used a graphical programming for the design of the control architecture as a common and

intuitive languague for a design team composed of managers, architecture designers, engineers,

programmers, and maintenance personnel. Graphical editors of Control Shell [8] are used for such

graphical programming. In addition, Control Shell provides a real-time software framework for the

i_plementation, debugging, maintenance of all control functions and interactions among them

defined in the design phase.

Chapter 2 describes the Functional Control Architecture for a Long Range Scientific Mars Rover,

defining first an Integrated Control Architecture (ICA) to put the Planetary Rover Control

Architecture into the context of the overal planetary exploration scenario. Later objectives and State

of the Art of Control Architectures for Mobile Robots are given and the MObile Robot Control

Architecture (MORCA) is defined as the baseline for the Functional Control Architecture of a Long

Range Scientific Mars Rover. Chapter 3 describes the Operational Control Architecture for a highly

and realistic autonomous planetary rover. Finite State Machines and Data Flow Diagrams are shown

for the design of this architecture using Control Shell toolkit. Chapter 4 describes the basic approach

for the Implementation Control Architecture and Chapter 5 gives experimental result with the JPL

micro-rover rocky7 when executing autonomously a high level task.

2. Definition of the Functional Control Architecture for a Space Rover

The Functional Control Architecture specifies what are the needed control functions and interactions

among them. Creating this architecture is the first phase of the design.

2.1 Integrated Control Architecture (ICA)

Following the top-down design approach, we first define the Integrated Control Architecture (ICA)

to support general space scenarios dealing with several cooperative elements such as robotic arms,

orbiters, landers, and planetary rovers. The major characteristics of ICA are:

• contains the functional control architectures of all the space elements that take part fully or

partially of a space mission,

• a common mission layer is defined on top of all the element control architectures. The common

mission layer has as input a common mission that is decomposed (planned or scheduled) into task

commands for each space element. The global mission layer controls the execution of the space

mission, for example controlling the sequence of tasks (dispatching),

• allows the placement of control functions of one space element on different space element in order

to achieve optimal overall performance,

• shows the communication among the control functions.
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The definition of these interactions among control functions in different elements play an important

role in a space mission based on planetary rovers. Interactions are needed when some elements are in

a better position to carry out control functions of other elements. For example a planetary rover is in

better position than a lander to carry out landing functions in real time, uplinking either relative

positions and attitude between lander and landing site or landing trajectories.

The main apportation of the Integrated Controi Architecture (ICA) to this paper is to emphasize that

the functional control architecture of a planetary rover has to be open to interact with other space
elements.
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Fig. 2. Integrated Control Architecture (ICA)

2.2 Objectives and State of the Art

The main objectives of a Functional Control Architecture for a planetary rover are:

• Generality: To be a general framework to allow a better understanding of all the functions needed

to achieve the design requirements of a control system, in order to fulfill a specific mission (see

Table 1), independent of operations and implementation features (control hardware, control

software, and human intervention),

• Inter-Element Cooperation: To support the interaction among space elements (several planetary

rovers, robotic arms, orbiters, and landers) taking part of a mission, identifying what kind of

information or commands are exchanged among such elements.

• Unit2L: To unify in the same framework all the possible implementations of Rover Control

Systems.

• Flexibility: To allow assessment of the capabilities and performances for each control

implementation as well as for different configurations of cooperation among the control

architectures of the elements taking part of a mission.

• Robustness: To allow robustness both in the presence of uncertainties about the knowledge of the

environment, and in the presence of inaccuracies and limited performances in rover, sensors, and

actuators,
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• Quickness: To allow execution in real time,

• Savings: To achieve low cost

Mission Commands Definition Parameters

INSPECT_AREA Build a topographic map of the <initial position>

environment. <surface to inspect>
<final location>

SURVEY_SPACECRAFT/
ROVER

RELAY_DATA

INSTALL_INSTRUMENT

#

COLLECT_SAMPLE

RETRIEVE_ITEM

Survey lander, parachutes (Mars), <spacecraft/rover location>

aeroshell shield (Mars) or other rover <area to survey>

Relay data from on-ground space

element (e.g. rover or lander) to

ground segment (e.g. Earth)

Deploy and install instruments.

<location of ground space element>

<location of ground segment >

<deployment location>

<type of instrument>

Collect, retrieve or analyse

rock samples.

soil or <sample location>

<type of sample>

<amount of sample>

<rendez-vous point

samples>

to return

Off loading of cargo items from <lander location>

lander <type of item>

<placement location>
Table 1. Soace Rover Mission Commands

There are a great number of approaches for the design of planetary rover control architectures

without a common definition of control functions and terminology [10][11][12][19]. Even when

each mobile robot application and scenario could require specific control functions and interaction

mechanisms among them, a common functional control architecture is of great interest for the sake

of a better understanding and assessment of capabilities. Also, a complete Functional Control

Architecture for a future Long Range Autonomous Space Rover is mandatory to handle the control

complexity that was never required in previous spacecrafts [24] [26].

Three main approaches for functional control architectures have been defined in the last ten years:

hierarchical, behavioral, and a hybrid of both.

Pure Hierachical Architectures. In this organization scheme based on a hierarchy of layers, decision

making processes are present at each resolution/abstraction level to either generate action commands

to the lower adjacent level or perceptual information to the upper one [10] [18] [19].

Pure Behavioral Architectures. The central idea of behavioral architectures is that a control system

consists of the desired external manifestations or behaviors of the system. There is not any goal

decomposition at execution time. This is done in the architecture design since goals do not change

from one problem to the next [1 1] [12].

Hybrid Architectures. These architectures try to combine hierarchical and behavioral approaches.

Hybrid architectures are a consequence of either an evolution of behavioral architectures or the

definition of a new architecture taking the most relevant advantages of both approaches [2] [16].
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Purehierarchicalarchitecturesaregoodto defineclearly all the control functions needed but fail in

real time execution having too much high level reasoning even without dealing with all the

uncertainties and constraints of a real rover application. Pure behavioral architectures are good in

real time execution reacting rapidly with the environment without high level reasoning but fail both

when the intelligence required is high and in a very complex scenario. Hybrid architectures are the

answer to our scenario and several designs have been done but however all of them were used in

simple scenarios. Our goal is to define a hybrid control architecture that combine properly all the

advantages of control and AI techniques for a Long Range Scientific Mars Rover working in a very

complex planetary rover exploration scenario.

2.3 MObile Robot Control Architecture (MORCA)

To accomplish all these objectives, the MObile Robot Control Architecture (MORCA) [2] was

defined as a general framework, mapping well-known approaches from the literature [10] [11] [12]

[16] [18] [19]. MORCA proved that behavioral and hierarchical approaches are not in conflict. The

o_ly difference is whether control functions are used in execution or in preparation.

For the design of a new functional control architecture for a Long Range Autonomous Space Rover,

we use the top-down task decomposition engineering approach followed in the hierarchical Mobile

Robot Control Architecture MORCA [2] [5]. This decomposition of the problem into lower level

functions together with an exhaustive definition of the commands and data among them, allows a

better understanding, test and update of a complex rover control architecture. The levels of the

MORCA architecture correspond to a subsequent refinement of commands to the mobile robot, from

highest level mission commands via commands on navigation, piloting, wheel motion coordination,
to individual wheel control commands.

The sequence of different tasks or mobile robot command levels has been identified, increasing in

complexity and abstraction, as it is shown in the following table.

M.R.command levels Mobile Robot commands

Degree 6

(Mission Comds)

a) Inspect area

b) Collect sample

Similarity with human commands

High level of messages between two people

(the boss to his employee)

Degree 5

(Navigation

Commands)

a) Go to a location Commands from a person, in an unknown

city to a taxi driver to go to a specific
address

Degree 4
(Piloting Comds)

a) Stay in a direction until event
b) Follow/Reach an object until
event

Commands to a car driver to reach an

address expressed by an occupant who

knows how to go

Degree 3 a) Border/Follow object

(Trajectory b) Go straight object

Commands) c) Stay in direction

e) Reduce/Increase speed

Driver commands to a learner

Degree 2 a) Steering Angle

(DeviceControlCmds) b) Speed

Car driver control actions

Degree 1 a) 5 Volts to Motor 1

( Control Outputs) b) Switch on a brake

Electrical Signal from the nervous system to
muscles

Table 2. Mobile Robot Command levels.
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Table 2 shows a hierarchy in mobile robot commands where all commands of degree i can be

transformed into a set of commands of degree i-l. The decomposition and the control of such

commands are performed by a set of functions contained in a control architecture. Because of the

mentioned hierarchy in mobile robot commands, our approach for the definition of MObile Robot

Control Architecture (MORCA) also follows a hierarchical structure, based on different layers. The

more the layers are able to work autonomously (no human presence), the more complicated are the
tasks which the rover achieve itself.

MORCA is structured into a hierarchy of functional layers where each layer is structured into three

parallel functional branches based on the concept of feedback control [7] [ 17]:

• Forward Control (FC). Responsible for activity decomposition, execution planning, control, and

command dispatching.

• Nominal Feedback (NF). Functions for refinement and update of a priori knowledge ("world

models") based on the actual, but essentially expected, evolution of the process and consequently

fc_rnulation of controlled adjustments of the FC.

• Non-Nominal Feedback (NNF) takes care of the correct functioning of this layer, detecting and

analysing non-nominal situations. It contains functions for the monitoring of discrepancies between

actual and allowable states in both the FC and the NF functions, diagnosis of their origins, and

generation of directives and constraints for FC.

Nominal Tuk Plmmning Non Nominal

Feedback Feedback

Task Control

Figure 1. Mobile Robot Control Architecture.
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An example of the Forward Control activity decomposition and planning is given in the appendix A

where: navigation nominal feedback updates the map and localizes the mobile rolmt, destination,

places of interest, and path segments inside the map; navigation non nominal feedback detects when

the mobile robot gets lost, generates strategies to find references for localization, and deals with

unexpected situations reported by the pilot; piloting nominal feedback detects environment features,

estimates trajectory status and rover internal state, and provides world model updates to navigation;

and piloting non-nominal feedback detects hazards, for example unexpected rocks or loose sand,

and generates the needed recovery strategies. Due to the modulatity of the architecture in layers and

functions, fast execution is possible using parallel computation.

A similar structure of MORCA can be used for the control system of other elements, such as robotic

arms or spacecrafts, taking part of the same mission. Also inside each element interaction among

different S/Ss (e.g. motion, thermal, and power control) is supported. In this way, MORCA also

supports the interaction among control functions in different mission elements, each control

architecture in ICA is based on MORCA as will be explained next,

iI

2.4. Functional Control Architecture for a Long Range Scientific Mars Rover

A Long Range Mars Rover is a complex spacecraft containing a set of elements, such as a mobile

platform, manipulator, pointable cameras, and scientific instruments, where each of these elements

has its own control system (see Figure 3).

Intcrac
withother
Mission
Components
(e.g.Lander,
nRover)

Figure 3. Space Elements of a Long Range Scientific Mars Rover
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In addition, as a regular spacecraft, each control system is divided into several subsystems, such as,

locomotion/propulsion, thermal, power, and telecommuniation (see Fig. 4).

) - Acceler
' __ - Voltag;s -Solar Panel

_o_ . . - Currents Actuators
- ,.,_.v - Steering

_Z- motors _ _ Actuators

_-Position _ Antenn.,-
- Receptor _, - Mechanisms

- Signal Power ... Drivers

Figure 4. Spacecraft Control Subsytem

Following an ICA structure, a centralized mission control layer, called micro-Rover Commander for

a Mars rover scenario, has to be added to command and to coordinate all the rover elements.

Following the MORCA and ICA design philosophy, first an exhaustive definition of the commands

and data transfer among rover elements [1] [20] is required to define the Functional Control

Architecture for a Long Range Scientific Mars Rover. Table 3 shows the set of Sojourner and Rocky

7 Body Motion Commands as an example.

Body Motion Control

Sojourner ' Rocky 7
I

Capture_Image_with_Camera <c>

atExposure <t>, Return_Region_from

(rl,cl) to (r2,c2) with APID <id>

Go to Waypoint_at <x,y> within <m>
Minutes

Material_Adherence

Move_Backward <n> Counts

Move_Forward <n> Counts

Set_Parameter <Maximum squeeze mode

navigation> = <Value>

Set_Parameter <Traverse cycle distance> =
<Value>

Turn_Left <n> Bams

Turn_Right <n> Barns

Turn to Heading <h>

Turn_Towards <x,y>

Pilot_update <x,y,z,theta>

(in panorama frame, degrees from

North)

Pilot_goto <x,y> (in panorama frame)

Pilot_goto_direct <x,y> (in panorama

frame)

Pilot_head <theta,x>

(degrees from North, distance)

Pilot_headdirect <theta,x>

Pilot_face <x,y> (in panorama frame)

Table 3. Sojourner and Rocky 7 Body Motion Commands
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Once all the Commands were defined for each element control system and for its subsystem, then all

the control functions (see Table 4) are identified following the hierarchical principle of MORCA.

Micro-

Rover

Control

Micro-

Rover

Commander

Platform

Control

Manipulator
Control

Mast

Control

Locomotion

Control

Navigation Layer Path Panning +
Control

Body Layer Planning +
Control

Wheel Planning +
Piloting Coordination Control

Layer Level

Wheel Level Planning +
Control

Actuator & Sensor

Level

Thermal Actuator & Sensor Level
Control

Power Control Actuator & Sensor Level

Telecom Actuator & Sensor Level

Control

Task Layer

Action Layer
Actuator & Sensor Level

Planning +
Control

Planning + Control

Planning + Control

Task Layer

Action Layer
Actuator & Sensor Level

Planning + Control

Planning + Control

Payload Actuator & Sensor Level
Control

Table 4. Control Functions for a Long Range Scientific Mars Rover

However, there are rover element control S/Ss (e.g. mobile platform locomotion S/S) that are more

complex than others needing a higher refinement of commands. Here again, MORCA design

philosophy are succesfuly applied.

3. Design of the Operational Control Architecture for a Space Long Range Science Rover

Once the needed control functions and interactions among them are defined in the Functional

Control Architecture an Operational Control Architecture 2 defines where all these control functions

are located (either on-board or on-ground) to achieve the desired control autonomy for a space

scenario. An Operational Control Architecture also defines extra operational support functions (see

Fig. 5).

2 Notation: The two parallel lines for data store, discontinous line for syncronization signal and arrow for data flow.
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To Ground _p_ _ From Ground

_men_Segment

Figure 5. Operational Control

3.,1. Commands and Information Transfer

Commands and information transfer are basically designed as single messages and queues where last

ones require extra pointers, e.g. a waiting and a execution pointer. Two main types of queues have

been implemented, FIFOs (First Input First Output) and LIFOs (Last Input First Output). The first

type was the one mostly used and the last one was mainly used for non-nominal event

communication. In addition, these queues support Artificial Intelligence reasoning techniques based

on queue manipulation.

Figure 6 shows this inter-communication in a control/planning module. The two parallel lines

include the name of the information to transfer (e.g. Data and Commands Parameters) and its

associated discontinous line is a signal or stimulus to represent an event (e.g. a Command). This

information is stored in FIFO queues except the non-nominal ones (Input 1.4 & Output 1.4) that
follow a LIFO structure.

tt •
actlV.,

To / from Input 1.2
Nominal

Feedback "NF_CFI"

'---1 I
Output 1.2

To / from higher level

L1

"CFl_Status" "CFI_Cmd"

laRt_.
Locomotion.

Planning or
Control

(e.g. Control

Function 1 (CF1))

"Req_CFI" or

"Rep_CFI"

"Interaction with

other element/device

controllers.

Information Exchange/

Action Request"

Output1.5

Input 1.5

"NNF_CF 1" or "Fault_Detected"

To / from Non Nominal
Output 1.4 Feedback

"CFN_Status" "CFN_Cmd"
Input 1.4

Output 1.3 Input 1.3

From / to higher level

Figure 6. Intercommunications in a Control/Planning Function
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The complete set of on-board Control and Operation Support functions for a Space Long Range

Science Rover [ 1][20] are given in the following table using the MORCA design philosophy.

Operational
Control

Architecture

Operation Command and Command

Support Telemetry Mangement

Module ,. Management Telemetry
Management

Control Operation Supervisor
Logistic Module

System Administrator

Micro-Rover Control (see Table 4)

Table 5. On-board Rover functions for the Operational Control Architecture

3.2. Capabilities needed for the Operational Control Architecture of a Space Long Range
Science Rover

f

A highly autonomous rover is mandatory for Space Long Range Science Missions. With more on-

board control functions there is a greater possibility that the mission goals will be reached. However,

on-board control functions (including sensors and actuators) can fail requiring external help.

Therefore flexible placement of operation support and control functions are needed between the

Ground and Flight Segments to reconfigure the Operational Control Architecture.

In addition, this architecture reconfiguration is needed for different mission phases. For example,

safety is the main issue at the beginning of a space mission, placing most of control functions on the

ground segment with highly human intervention (human on the control loop). However, at the end of

the mission, more challenging and highly autonomous rover tasks will be commanded having most

of the control functions executing on-board.

Architecture configuration is also needed to handle anomalies like software malfunctions or loss of

communication, where on-ground control functions are completely useless. Therefore, the rover

automatically has to reconfigure 'its Operational Control Architecture in order to become more

autonomous and find recovery strategies to establish communication to Earth.

As a conclusion, a Space Long Range Science Rover must have the capability to receive high and
low level commands.

For a spacecraft, and then for a space rover, there are four major Operation Support Functions:

Command and Telemetry Management (CTM); Control Operation Supervisor (COS); Logistic

Module (LM); and System Administrator (SA), as shown in Figure 7.
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To Ground Segment From Ground Segment

Telemetry Unit Command Unit

LM Data

+ Cmd Parameters

•_°°°...................... ......._.....°......_

COS to

COS

IaRC. In pRC. Out

Figure 7. Main Operation Support Functions for a Spacecraft

The Command Management Module distributes the commands received from ground to the

Telemetry Management Module, LM, and SA. The Telemetry Management Module handles the

downlink of all the telemetry data accumulated in its input buffer. It also generates a heartbeat, and

establishes telecommunication signals to Earth. See Figure 8.

Telemetry

Unit Command Unit

CTMto _ _ Command ,;
RFSH i _ DataBase

, _."(,M_agmm 1_ .... \ _ __m___mm J

_--__ CM to TM

DataB_ _. i Coma
|i . COSto i + Cmd Parameters

TelemetryData CTM l

Figure 8. Structure of the Command and Telemetry Management

The Logistic Module (LM) contains the rover clock and computer hardware supervisor. It sends

clock signals to other modules, for example a wake up signal. System Administrator (SA) is in

charge of the file system making sure that there is enough computing resources available for the

execution of operation support and control functions.
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LM Data.

Time & Date !
I

Cored
+ Cmd Parameters

Fig. 9. Main Functions of the Logistic

Module (LM)

The Control Operation Supervisor (COS) is in charge of: resources management and health care;

distribution of the received commands from CM to any control function checking they are consistent

with the current operation mode; re.configuration of Operational Control Architecture when both

anomalies occur like loss of communication to Earth and wake up signal is received when the rover

was in "stand by" (e.g. during the night).

3.3 Design using Graphical Programming, Classic Control Concepts, and Artificial

Intelligence Concepts.

The design of an Operational Control Architecture for a Planetary Long Range Science Rover

[1][23] needs of a real-time framework for engineering control design dealing with the complexity

of: large projects, real-time software, event processing, feedback control, and interacting teams of

programmers, engineers, managers, and maintenance personnel. Therefore we use graphical

programming for our design promoting understandability and as a consequence the design is quicker

to learn, faster to develop, easier to debug, and less costly to maintain.

We use the well-known classic control concepts of Finite State Machine, Dataflow Diagrams, and

classic queue manipulation for the design of the whole architecture. Finite State Machines are used

for event-driven reaction and Dataflow Diagrams for synchronous cyclic data processing including

the implementation of AI behaviors.

3.3. I. Guidelines for the use of Finite State Machines and Dataflow Diagrams

An Operational Control Architecture must be designed to work in real time, that is, fast command

execution and fast reaction to events stablishing priorities among them. It is also mandatory for

inter-communication efficiency and good controlability of the functioning of the Operational

Control Architecture, to minimize the number of control functions working in parallel, that is, to

minimize the number of Finite State Machines and Dataflow processes (both Operating System

processes) but still keeping the required real time performance. Thus, it was found convenient to

design a Standard Finite State Machine structure that group several control functions that were

already defined in the Functional Control Architecture.

We group Planning, Control, or Dispatching functions together with Nominal, Non-Nominal, and

External Event Handling functions for any architecture layer (see Figure 10). A subset of this

structure is also used for Operation support functions.
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This grouping was selected because these functions are exclusive, that is only one is requiered to

work at once and because this grouping contains the mechanisms that establishes the desired priority

in their execution. For example, whenever a diagnosis and recovery strategy generation function

takes place only its execution is requiered at its layer, without considering the execution of nominal

planning or any nominal control action. At the same time, a non-nominal event has the highest

priority in its layer canceling the execution of _y other control function in progress.

A secondary advantage of this grouping is that all these control functions share the same inter-

communication function to communicate with other Finite State Machines either in the same or

different control layers via the already mentioned Queues.

Cmd

NNF Queue

NF Queue

Cmdl

NNF- Event_l

°*°

Event_N

NF- Event_l

Up- Report

.,.

Up- Report_N

Ext- Report_N

Figure 10. Standard Finite State Machine structure for Planning or Control Functions

Dataflow diagrams are used in the Operational Control Architecture for continuos cycle sequences

for example as sequence composed of nominal feedback (including sampled data feedback),

planning, control, and motor driver activation (see Fig. 11). Sometimes a subset of this whole

sequence is only required, for example standalone Nominal Feedback functions that can run

independently to detect nominal events (e.g. a trajectory final condition reached) that communicates

to a Finite State Machine via its NF queue.

Aleiandro Martin-Alvarez / 14/25



) Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

!

ii
I

"CFN_Cmd"

Figure 1 1. Schematic DFE structure for a Rover Control Continuous Cycle Sequence

Dataflow Diagrams are also used for Non Nominal Feedback monitoring, maybe sharing some

components with the NF. This NNF monitoring has the capability to communicate a non-nominal

event to a Finite State Machine, that is performing control or planning tasks, via its NNF Queue (see

Figure 12).

activ.0/disactiv.0

NNF_Monitoring.

Input 1.4 Input _ Config.

!

Figure 12. Schematic DFE Structure for a Non Nominal Feedback Monitoring Function.

3.3.2. Control Shell Tool

Our control architecture design uses the commercial Control Shell Tool [8] because is compliaced

with our requirements of graphical programming and the concepts of Finite State Machines for

event-driven reaction and Dataflow Diagrams for synchronous cyclic data processing. Control Shell

also supports object-oriented modelling for the control design and implementation.
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In addition, Control Shell provides system configuration control for changing operating modes and

real-time matrix mathematics package (CSMat) useful for real time AI reasoning based on queue

manipulation mandatory for a highly Autonomous Long Range Science Rover.

Figure 13 shows what a FSM looks like in the CS FSM graphical editor. Boxes represent states and

arrows the transition among states. A name in ,quotes represent a stimulus, that is the event, and after

the slash appears the transition function as the action after the event. The return codes of a transition

function, used for decision making, select the next stay to stay waiting for a new event.

Figure 13. Example of a FSM in the Control Shell FSM Graphical Editor

Figure 14 shows how a DFE looks like in the CS DFE graphical editor. Boxes represent

components, arrows represent the data flow connecting inputs and outputs (left and right side

respectively) of the components, each arrow has associated the name of CSMat used a

communication data, and the lines above of each component represent component's parameters

mostly in CSMat format (constants are allowed as well).

Figure 14. Example of DFE in the Control Shell DFE Graphical Editor
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4. Design of the Implementation Control Architecture for a Space Long Range Science Rover

Once the Operational Control Architecture defines the location (on-board and on-ground) of control

and operation control [unctions, Implementation Control Architecture, defines how to implement

them (software, hardware, or human intervention). The well known software architecture in the

computing science community, is only the software side of a Implementation Control Architecture.

For the design of this Control Architecture, we used the mentioned Control Shell tool, that using

Object Oriented Programming templates, generates the C++ based structure (declaration of functions

and input and output parameters) for each piece of code both for DFE components and FSM

transition functions.

For our applications, we use the VxWorks Operating System running on top of a VME chassis.

5. Experimental Results

q

5.1 Rocky 7.

The JPL-NASA micro-rover Rocky 7 [21 ] was
used as breadboard for Control Architecture of

a Long Range Autonomous Space Rover.

Rocky 7 (see Fig. 15) is a research micro-rover

used to demonstrate new technology concepts

for use in a long range (>1 Km) traversal

across Mars, scheduled for early in the next

decade. Its locomotion is a modified six wheel

rocker/bogey similar to Sojourner (NASA Path

Finder mission).

Its main features are: 1) size: 60 x 40 x 33 cm;

2) mass: 15.7 kg; 3) power: rechargeable

NiCad batteries and Si solar panel; 4)

computer: 3U VME, 68060 CPU, 100 MIPS;

5) Science Payload: a selection of IR

reflectance spectrometer, color filter stereo

imager, multispectral close-up imager, and

Mossbauer spectrometer; 5) 4 DoF Arm; and

6) a camera Mast able to deploy itself 1.4m

above the ground.

Figure 15. JPL-NASA Micro-Rover Rocky 7
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5.2 Experimental results with Rocky 7 Technological Micro-Rover

Following MORCA and ICA principles, a full control system for a Long Range Autonomous Mars

Rover has been designed using the graphical editors of Control Shell. As a first implementation step,

a distributed task execution and a fully autonomous piloting layer have been implemented. The

distributed task execution consists that both the stereo camera mast, mobile platform, and robotic

arm independently execute and handle its own command queues and the rover commander

coordinates all of them. The fully autonomous piloting layer achieves continuous driving without

stops for obstacle detection or the planning of a new path segment. Also some operation support

functions, as command management, have been implemented simulating a "real" space mission.

In the testing scenario, first the camera mast is deploied taking pictures and later a ground segment

operator uses his knowledge about the rover environment and position, and the desired destination,

torgenerate a path consisting of a set of path segments (see Appendix A for a complete example),

being the operator supported with a path planner tool. The last task is when that the robotic arm

takes a sample in the desired destination. In our testing scenario, navigation path planning is done

off-line, by creating a set of consecutive path segments with the parameters: motion direction

(forward or backward), cruise speed, final condition, final condition accuracy, and dispatching mode

(syncronous or asyncronous), and stop mode after its execution.

The execution of four path segments are shown in the Figure 16, where the first two path segments

(from (0,0) to (3,2) meters and from (3,2) to (5,2) meters respectively) consist in: high and slow

speed forward motion respectively, the third one (from (5,2) to (4,3) meters) in low speed backward

motion, and the last path segment (from (4,3) to (4,2.8) meters) in order to face the sample to

observe consists in a very slow forward motion.

Aleiandro Martin-Alvarez / 18/25



, Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

Once the execution of all these path segments are executed autonomously then the rover reports back

to the operator that his command was successfully executed. However if the rover cannot find a

recovery strategy for a non-nominal situation then the operator will be asked for help and the control

operation mode changes in such a way that some control functions switch from software or hardware

to operator in the loop.

In detail, the testing of the autonomous piloting layer consists of:

• The ground segment operator generates a sequence of tasks for the camera mast, rover piloting,

and robotic arm, and uplinks it via ethernet (simulating DSN).

• An ethernet input control Shell component reads all the received tasks from a VxWork socket and

traslates them into Control Shell format (CSMat). Later this ethernet input component introduces all

these tasks to the input data queue of the Command Management FSM sending a stimulus to

communicate that ground data is ready to process.

• The Command Management FSM interprets the input data, and in this case, send it to the Control

Operation Supervisor function (COS), see Fig. 7, that does its own interpretation as well. The

Control Operation Supervisor function dispatches a block of commands sequentially to the Mast

Control (MC), to the Body Motion Control FSM (BMC), and to the Robotic Arm Control. See Table

4.

• For each path segment, the Body Motion Control FSM will activate several control functions as

Control Shell (CS) components that must work in real time. These control functions are:

• Path segment control consisting of a set of consecutive components for both the piloting

nominal feedback (encoder and angular rate sensor reading and position estimation) and piloting

forward control functions based on the behavioral approach of having several controllers working

in parallel (e.g. a speed and steering controller components) fusioning their outputs (behavior

fusion component). See Figures 11 and 12.

• Body Motion Control will also command to the Wheel Coordination Planning and Wheel

Motion Control Layers to activate the inverse kinematic, for Ackerman steering, and wheel motor

driver components respectively.

• Piloting Nominal Feedback of Final Condition consists in a component to detect a cartesian

point was reached (see Fig. 12)..

• Piloting Non Nominal Path segment monitoring based on an optical vision system [22]

consisting of a set of consecutive components: camera data readers, warpers, Laplacian filters,

stereo matching, range and elevation map generators, and obstacle detector (see Fig. 17).

• Piloting Non Nominal Feedback of Rover attitude monitoring consisting of a set of consecutive

components: bogies angle data readers, filter, and dangerous attitude detector.

• Piloting Non Nominal Feedback of Rover motor monitoring consisting of a set of consecutive

components: motor current reading, current filter, and max current detector.

• The Final Condition component will send a message to the BMC nominal feedback queue (see

Figures 10 and 12) when the desired cartesian coordinate is reached. Then the BMC will ask for next

path segment to COS. If syncronous communiation was selected then COS will send next path

segment if any, otherwise the whole path is executed communicating of this fact to the Telemetry

Manager FSM that will downlink this event to the ground operator.

• The obstacle and attitude detector, and max current detector will send a message to the non

nominal queues of the BMC and WMC FSMs respectively (see Fig. 10 and 12) when its

correspondent failure is detected. Hazard recovery strategies will be generated. However if no

recovery strategy is possible will downlink this event to the ground operator asking for help.
• Similar control functions to the BMC are activated for the stereo vision mast and robotic arm.
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Figure 17. Range Map, Vision Camera Images, and Elevation Map respectively from the Rocky 7

Piloting Non-Nominal Path Segment Monitoring

f

6. Conclusions and Future Work

A full design of a complete control architecture for a Long Range Science Rover Control System

have been proved and the implementation of an autonomous piloting have been shown using

successfully the JPL-NASA micro-rover Rocky 7.

A sequence of three Control Architectures (Functional, Operational, and Implementation Control

Architectures) have been presented as a good methodology to design a complete control architecture

for a complex Space Rover.

An Integrated Control Architecture (ICA) was efficiently shown for inter-element cooperation where

the motion control system of each element is based on the Mobile Robot Control Architecture

(MORCA) structure.

Space Rover Control Architectures have been successfully shown that they are consistent with

MORCA which has extensively been used to define the control architecture for planetary mobile

robots, defining a hierarchy of control layers and the internal structure for each layer (Nominal

Feedback, Forward Control, and Non Nominal Feedback).

As a gained experience, a pure hierarchical architecture without Non-nominal Feedback

(contingency detection and recovery) are the optimum ones. However, due to all the high

uncertainties and inaccuracies in a space rover and the mission itself when planning and control are

done, non-nominal feedback is needed to take care of the functioning of each control layer and

recover the rover from dangerous situations.

A combination of reactive and planning techniques together have been presented for the

implementation of the piloting control subsystem to fulfil the severe control requirements of a space

mission as to handle high level of uncertainty and inaccuracies.

An autonomous piloting layer has been implemented to successfully achieve in real time continuous

driving, detecting and handling non-nominal situations. This real time operation had to deal with the

complexity of having numerous and powerful control functions with different operation modes like:

cyclic processing of a sequence, parallel execution at convenient sample rates, and event-driven

interactions for syncronization, and detection of nominal or non-nominal situations.
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All control functions (low and high level) including auxiliary ones for operation support are defined,

implemented, and unified in the same graphical tools provided by Control Shell. In addition, Control

Shell Real-Time SetScope tool was succesfully used to visualize in real time the Rocky 7 trajectory

in its traversy on the JPL Mars Yard during the execution of autonomous piloting.

It was found of big interest the direct correlation existing between MORCA design philosophy and

ControlShell graphical tools.

As future work, the implementation of a full autonomous control system is under construction with

high level planners and high level generators of recovery strategies. Similar design of Control

Architectures are under consideration for other type of autonomous spacecrafts (e.g. landers, chasers,

orbiters) therefore other JPL projects, as the ones in the New Millenium Program [9], can benefit of

this work as well.
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APPENDICES

APPENDIX 1

Landmark_6 Planetary
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Figure 18. Example of Execution of Mission Cmds

A) Mission Command: "COLLECT_SAMPLE <sample A>"

B) Navigation Command: "GO_TO_LOCATION <sample A>"

C) Piloting Command's:

C. 1) MOVE_TO <Final condition: cardinal point PI>; <Motion reference: cardinal point PI>
<Motion direction: forward>

C.2) REACH <Final condition: cardinal point P2 & external object: landmark_l, in front, distance

d2> <Motion reference: external object landmark_l> <Motion direction: forward>

C.3) BORDER <Final condition: cardinal point P3> <Motion reference: external object:

landmark_I, on the right, distance d3> <Motion direction: forward>

C.4) MOVE_TO <Final condition: cardinal point P4 & external object: sample A, in front,

distance d4> <Motion reference: cardinal point P4> <Motion direction: forward>
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